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ABSTRACT 

Let H be a finite-dimensional Hopf algebra over the field K and let A be an 

H-module algebra. In a previous paper, we defined the Connes spec t rum 

CS(A, H) for the action of H on A to be a certain subset  of the set Irr(H) 

of irreducible representations of H. In this paper, we compute a number  of 

examples; specifically, we consider certain inner and outer actions and we 

take a closer look at the cocommutative situation. We discover that  the 

information encoded in the Connes spectrum is rather subtle and elusive. 

1. I n t r o d u c t i o n  

Let H be a finite-dimensional Hopf algebra over the field K and let A be an 

H-module algebra with 1. The Connes spectrum CS(A, H) for the action of 

H on A was defined in [OPQ] to be a certain subset of the set Irr(H) of ir- 

reducible representations of H. It was then shown, under suitable hypotheses, 

that CS(A, H) = Irr(H) if and only if the smash product A#H is prime. In 

this paper, we continue to study the Connes spectrum; our goal here is to better 

understand its relationship to the H-action on A and we do this by computing a 
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number of examples. Specifically, we consider certain inner and outer actions and 

we take a closer look at the cocommutative situation. The inner case is the most 

interesting; it indicates that the information encoded in the Connes spectrum is 

rather subtle and elusive. 

We follow the notation of [OPQ]. Thus suppose that H is a finite-dimensional 

Hopf algebra over the field K and that A is an H-module algebra with 1. Then a 

hereditary subalgebra (without 1) of A is a subspace B = RL where R is an H- 

stable right idea/of  A and L is an H-stable left ideal. Note that B is necessarily 

H-stable, B 2 C_ RAL  = B and that B = RL C_ R n L. Furthermore, we let 

7-/(A, H)  denote the set of all hereditary subalgebras B C_ A with B reg B, that 

is with 1.annB B = 0 = r.annB B. 

Now let 7r: H ~ C be an irreducible representation of H and extend the left 

action of H on B to an action on B @K C via the formula h. (b ® c) = (h.  b) ® c 

for all b E B, c E C. Let X E B ® C; we define three subspaces of the tensor 

product as follows. First, X E B~" if and only if 

(h) 

for all h E H. Next, X E B~ if and only if 

(1.2) e(h)X = E [ 1  ® rr(h2)] (h , .  X)  
(h) 

for all h E H. Finally, X E B E if and only if 

(1.3) e(h)X = E ( h , .  X)[1 ® 7r(S- '(h2))] 
(h) 

for all h E H. Of course, Ah = ~--~(h) hi ® h2 is the comultiplication of h, the 

map 5:: H ~ H is the antipode and ~: H ~ K is the counit of H. Furthermore, 

"m", "/" and "v" stand for "middle", "left" and "right", respectively. It was 
I r shown in [OPQ] that B ~  is a subalgebra (without 1) of B ® C and that B,~B,~ 

is a two-sided ideal of Bm. 

With this notation, the Connes spectrum CS(A, H)  is defined to be 

(1.4) CS(A,H)  {rr 6 Irr(H) l L r ,, = B~,B,~ reg B,r for all B 6 H(A, H)  }. 

Note that, as given above, CS(A, H)  makes sense even if H is not semisimple 

and K is not a splitting field for H.  On the other hand, the latter conditions are 

certainly natural assumptions when dealing with Irr(H). 
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We close this section with some elementary observations. To start with, we 

have the following result which is reminiscent of [OPQ, Lemma 4.4]. Note that 

A # H  is a free left and right A-module by [OPQ, Lemma 1.4(i)]. 

(1.5) LEMMA: Let B E 7-I(A,H). If the smash product A # H  is prime or 

semiprime, then so in B # H .  

Proof." Suppose first that A # H  is prime. Let Ii and I2 be ideals of B # H  

with 1112 = 0 and let II and I~ be the possibly smaller ideals given by I~ = 

( B # H ) I i ( B # H )  for i = 1,2. Write B = RL as a product of appropriate right 

and left ideals of A and set Ji = LIaR C_ A # H .  Since R and L are H-stable right 

and left ideals of A, respectively, and since B # H  is closed under multiplication 

by H, it follows that each Ji is a two-sided ideal of A # H .  Furthermore, since 

I~ c_ I/, we have 

J1g2 = L6(RL)I~R c_ L(I~I~)R = O. 

But A # H  is prime, so this implies that 0 = Jj = LIaR for j = 1 or 2 and hence 

that 0 = RJjL = BI~B. By assumption, B reg B and therefore, by freeness, 

B is regular in B # H .  Thus 0 = SI~S  yields 0 = 13 = ( B # H ) I j ( B # H )  and, 

by regularity again, we deduce that Ij = 0. This handles the prime case; the 

semiprime result follows by taking Ii = 12. | 

Recall that A is H-semiprime if A has no nonzero H-stable nilpotent ideal. In 

addition, H is said to be strongly semiprime if A # H  is semiprinm whenever A 

is an H-module algebra with 1 which is H-semiprime. It is clear that a finite- 

dimensional strongly semiprime Hopf algebra is necessarily semisimple. 

(1.6) LEMMA: Assume that A # H  is semiprime. 

(i) If B e 7"I(A,H) and if 

B H = {b E B [ e(h)b-- h. b for allh E H } 

is its subring of H-invariants, then B n reg B. 

(ii) The counit e is contained in CS(A, H). 

In particular, (i) and (ii) hold if  H is strongly semiprime and A is an H-semiprime 

H-module Mgebra. 
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Proof: 

(i) By the previous lemma, B # H  is semiprime and this allows us to use 

the techniques of [BeM, Section 2]. Let f be a right integral of H and 

let X = r.annBB H. Since X is an H-stable right ideal of B, by [OPQ, 

Lemma 1.4(ii)], it follows that f X  is a right ideal of B # H .  But ( f X )  2 = 

( f X f ) X  C_ f B H X  = 0, so the semiprimeness of B # H  implies that f X  = 0 

and hence that X = 0 by [OPQ, Lemma 1.4(i)]. In a similar manner, we 

can prove that 1.annBB H = 0 and therefore we conclude that B H reg B. 

(ii) Note that  e: H ~ K is an irreducible representation of H and that B ® K  ~- 

B for any B E 7-/(A, H). Furthemmre, equations (1.1), (1.2) and (1.3) easily 

imply that B~" = B~ = B~" = B n. In view of the definition of CS(A, H), it 

suffices to show that B H reg B H and this follows from (i). II 

It would be interesting to characterize those actions with CS(A, H) = { e }. 

In particular, we would like to know whether this condition is equivalent to a 

natural property of A#H.  

2. I n n e r  A c t i o n s  

If H is a Hopf algebra over the field K,  then H becomes an H-module algebra 

by way of the adjoint action 

(ad h)x = h,xS(h ) 
(h) 

for all h, x E H, and it is clear that every two-sided ideal of H is ad H-stable. 

In particular, if H is semisimple and if A is a simple two-sided ideal of H, then 

A is a K-algebra with 1 and A is an H-module algebra using the restriction of 

the adjoint representation. The goal of this section is to compute the Connes 

spectrum CS(A, H) in this situation. 

We will actually start with certain weaker assumptions on H and A which will 

be described in the next paragraph. However, there is one natural assumption 

on the antipode S of H which will remain in force throughout the entire section. 

Namely, we suppose that the automorphism S 2 of H is inner, induced by the 

unit u -1 E H. In other words, 

(2.1) S2(h) = u- lhu for all h E H. 
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Note that,  if H is semisimple, then Kaplansky's conjecture asserts that S 2 = 1 

and this conjecture has been verified for fields of characteristic 0 by [LR]. In 

particular, (2.1) holds in this case with u = 1. Furthermore, if K is a splitting 

field for H,  then it is known ILl that 5 '2 is at least inner. In fact, even without the 

semisimple assumption, we have 5'2 = 1 if H is cocommutative. In other words, 

(2.1) is not an unreasonable supposition; we conclude from it that u - 1 5 " - ~ ( h ) u  = 

= s (h )  and therefore 

c.(h)...~ E hlu-15"-l(h2)u-~ Eu-lS-l(hl)uh2 . 
(h) (h) 

In particular, if we appropriately multiply each expression by u and u -1, we 

obtain 

(2.2) = uh,u-'S-'(h2)= S-'(h,)uh2u-' 
(h) (h) 

for all h E H. 

Now let H be an arbitrary finite-dimensional Hopf algebra satisfying (2.1), let 

A be a K-algebra with 1 and let 8: H ~ A be a K-algebra homomorphism. Then 

8 and the adjoint action of H induce an action of H on A given by 

(2.3) h . a = E t ~ ( h l ) a S ( S ( h 2 ) )  
(h) 

for all h E H and a E A. In this way, A becomes an H-module algebra and we 

study the Connes spectrum CS(A, H)  of this action. To start with, let 7r: H --* C 

be an irreducible representation of H and recall that the action of H on A ® C 

is given by 

h . (a O c) = (h . a) ® c = ~ , O ( h , ) a O ( S ( h 2 ) )  ® c. 
(h) 

Thus, we have 

(2.4) 
(h) 

for all h E H and X E A® C. 
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(2.5) LEMMA: Suppose B is a hereditary subalgebra o£ A and that X E B ® C  C_ 

A ® C .  

(i) X E B~ if and only if 

(h) 

for all h E H. 

(ii) X E B~ if and only if 

(h) 

for all h E H. 

(iii) X E B~ if and only if 

(h) 

for all h E H. 

Proof: 

(i) Equations (1.1) and (2.4) imply that X E B,~' if and only if 

(a) 

for all h E H, and, since S-1: H ~ H is onto, we can replace h by S - l ( h )  

in the above expression. Hence, since 

A3(S-I(h))  = E S- l (h4)® s- l (h3)  ® S-l(h2) ® s - l ( h l )  
(h) 

and e (S- l (h) )  = e(h), we see that X E B~' if and only if 

(h) 

But S-2(h)  = uhu -1, so the result follows. 

(ii) Here, equations (1.2) and (2.4) imply that X E B~ if and only if 

(h) 
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for all h E H. Again, replace h by S-l(h)  and use 

A2(S-l(h)) = ~ s-l(h3)@ s-l(h2) ® s-l(hi). 
(h) 

Thus, since e(S-l(h))  -- e(h), we see that X E B~ if and only if 

(h) 

as required. 

(iii) This follows directly from equations (1.3) and (2.4). II 

Now let us define a map D: H ~ A ® C by 

(2.6) D(h) = Z 0(h2)®~r(uh ,u-1) .  
(h) 

Notice that D is the composite of the algebra homomorphisms 

H a ~ H ® H  T ~ H Q H  I ® " ~ H ® H e ° ~ A N C  

w h e r e T i s  the twist map and l ® u :  x N y  ~-* x ® u y u  -1. Thus D i s  also an 

algebra homomorphism. The following characterizations are a key ingredient 

in our computation. As in [OPQ], we use an underline to indicate the next 

expression to be simplified. 

(2.7) LEMMA: Let B be a hereditary subalgebra of A and let X 6 B ® C. 

(i) x • B~  if and only if 

D(h)X = XD(h)  for ail h • H. 

(ii) X • B~ if and only if 

D(h)X = x(o(h)  ® ~) for .11 h • H. 

(iii) X • B~ if  and only i f  

XD(h)  = (O(h) ® 1)X t'or a11 h e H. 

Proof: We show that conditions (i), (ii) and (iii) as given above are equivalent 

to the corresponding conditions of Lemma 2.5. 
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(i) If X E B .  m, then for any h E H we have 

(h) 

= [ E  o(h~) ®.(u~,u-,)] ~(h~)x 
(h) 

(h) 

by Lemma 2.5(i). Thus (2.2) yields 

D(h)X = E[~(h4)~(hl)]X[O(h3)~) ~(uh2u-1)] 
(h) 

(h) 

= E x [o(~)®.(uh,u-')] = xv(h). 
(h) 

Conversely, suppose D(h)X = XD(h) for all h e H. Then, since D(h2) = 

E(h) 0(h3) ~ 7r(uh2u-1), we have 

( h )  • 

= y~ [e(S-l(h~)h3) ®-(S-'(h,)uh2~-~)]X 
(h) 

= ~-~ [~(h2) ® ~(hl)] X = ~(h)X 
(h) 

where (2.2) is used to simplify the expression ~-~(h) S-x(hl) uh2u-l" It therefore 

follows from Lemma 2.50) that X E B~'. 

(ii) If X E Bt,, then for any h E H we have 

(h) 

(h) 

= E [0(I~5S-1(h4)) ~lr(uhllt-ls-l(h2))]X[O(h3)~ 1] 
(h) 
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by Lemma 2.5(ii). Thus, equation (2.2) yields 

(h) 

(a) 

as required. 

Conversely, suppose that D(h)X = X(O(h) ® 1) for all h • H. Then we have 

(h) 

(h) 

by equation (2.2). Therefore X • B~, by Lemma 2.5(ii), and part (ii) is proved. 

(iii) Finally, if X • B~, then Lemma 2.5(iii) implies that 

~ ) - -  ~[~ ~/~/® ~/~e~-l/] 
(h) 

(h) 

(h) 

for all h E H. Thus, (2.2) yields 

(h) 

(h) 

(h) 

as required. 
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On the other hand, suppose that XD(h) = (O(h) ® 1)X for all h E H. Then 

we have 

(h) 

(n) 

= E x [ 1  ®Tr(uh,u-lS-'(h2))] = e(h)X 
(h) 

by equation (2.2), and therefore X E B,~ by Lemma 2.5(iii). | 

Next, we see that the hereditary subalgebras of A are easily determined in this 

context. 

(2.8) LEMMA: If O: H ~ A is an epimorphism, then the hereditary subMgebras 
of A are precisely its two-sided ideals. 

Proof." If I is a two-sided ideal of A, then equation (2.3) implies that I is H- 

stable. Thus I = IA is a hereditary subalgebra of A. 

For the converse, we need two elementary identities which follow from (2.3) 

and which hold for all h E H and a E A. First, 

E ( h l "  a)O(h2) = E O(hl)aO(S(h2)h9 
(h) (h) 

and second, 

= E O(h,e(h2pa = O(h)a 
(h) 

E O(h2)~ S - l ( h l ) ' a  ) = E O(h3S-l(h2)) atg(hl) 
(h) (h) 

= E a0(h,,(h2)) = aO(h). 
(h) 

As a consequence of the former, we see that if R is an H-stable right ideal of A 

and if a e R, then 8(h)a E R for all h e H. But 0(H) = A, by assumption, and 

therefore R is a two-sided ideal of A. Similarly, the latter formula implies that 

any H-stable left ideal L of A is two sided. Hence, any B = RL is a two-sided 

ideal of A. | 
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To proceed further, it is necessary to make some additional assmnptions on 

A and on 7r and to introduce some additional notation. Once this is done, 

Lemma 2.7 can be given a module-theoretic interpretation, leading to a pre- 

cise understanding of A~', A~ and A~. This, along with Lemma 2.8, will then 

yield the Connes spectrum. 

To start  with, let V be a fixed left H-module mad assume that A = EndK(V) 

and that the homomorphism 8: H ---* A = Endg(V)  is determined by the module 

action. Next, let W = W(Tr) be the irreducible left H-module associated with 

the representation lr and suppose that K is a splitting field for 7r. By this we 

mean that C = 7r(H) = Endg (W)  and in particular that C is isomorphic to the 

full ring of d,~ × d~ matrices over K where d,~ = dimg W. 

Since W is finite dimensional, it follows that 

A ® C = EndK(V) ® EndA-(W) = EndK(V ® W) 

with appropriate identification. In particular, any homomorphism from H to 

A ® C = En dg (V  ® W) defines a left H-module structure on V ® W and there 

are two such homomorphisms of interest to us. First, we have D: H ~ A ® C, as 

given in (2.6), and we denote the corresponding H-module obtained in this way 

by (V @ W)D. Next, we have E: H --* A ® C, given by 

(2.9) E(h) =/9(h) ® 1 for all h E H, 

and we denote its corresponding left H-module by (V ® W)E. In other words, 

h(v ® W)D -~ E O(h2)v ® 7 r ( U h l ~ - l ) w  
(h) 

while h(v @ W)E = 6(h)v ® w. 

(2.10) LEMMA: With the above notation, we have 

(i) (V ® W)D ~- W @ V, where the latter is the usual tensor module given by 

(h) 

for all h E H, w E W and v E V. 
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(ii) (V @ W)E '~ (dimK W)V,  where the latter is the direct sum of dimK W 

copies of V. 

Proof." For part (i), we observe that the map W @ V ~ (V ® W)D given by 

w ® v ~ v ® 7r(u)w is an H-module isomorphisn~. Part (ii) is obvious from the 

nature of the action of H on (V ® W)E. | 

Note that (V @ W)E ~- Wc ® V where W, = W as a K-vector space and where 

hw = e(h)w for all h E H and w E W,. We are now ready to compute the sets 

A m, Atn and A,~ corresponding to the hereditary subalgebra A E 7-/(A, H). 

(2.11) LEMMA: With the above notation, we have 

(i) A~' = Endg ((V ® W)D) 

(ii) At~ = nomu( (Y ® W)E,(V ® W)D) 

(iii) A,~ = Homn ((V ® W)D, (Y ® W)E) 

where these are all viewed as subspaces of A ® C = Endg(V ® W) and where 

the endomorphisms act on the left. 

Proof." This is immediate from Lemma 2.7 and the definition of D, E and 

the corresponding modules (V ® W)D and (V ® W)E. For exaanple, the map 

X: (V ® W)E ~ (V ® W)D is an H-nmdule honmmorphism if and only if 

X E n n d g ( V ® W )  = A ® C  and XE(h)  = V(h)X for all h E H. In other words, 

by Lemma 2.7(ii), this occurs if and only if X E A~. The arguments for A~" and 

A~r are of course sinfilar. II 

As a consequence, we obtain 

(2.12) LEMMA: Suppose, in addition, that V is an irreducible H-module and 

that H is semisimple. Write (V ® W)o  = Y Jr Z, where Y is the homogeneous 

component corresponding to the irreducible module V and where Z is the sum 

of the remaining homogeneous components. Then 

Am = EndH ((V ® W)D) = EndH(Y) q- EndH(Z) 

is a ring direct sum and A~A~ = EndH(Y). 

Proof." Since H is semisimple, (V ® W)D does indeed have the structure Y -~ Z 

as described above. Furthermore, since HomH(Y, Z) = 0 and HomH(Z, Y) = 0, 

it is clear that A~ = EndH((V ® W)D) is the ring direct sum EndH(Y Jr Z) = 

Endg(Y) Jr Endu(Z). Finally, by Lemma 2.11(ii)(iii), I r A~A~ is the linear span 
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of all H-endomorphisms of (V ® W)D which factor through (V ® W)E. But 

(V ® W)E ~- (dimK W)V,  by Lemma 2.10(ii), and we know that Y is a direct 
I r sum of copies of V, so it is clear that A,~A,, is indeed equal to End/-/(Y). | 

It is now a simple matter to prove the main result of this section. 

(2.13) TItEOREM: Let H be a finite-dimensional semisimple Hopf algebra over 

the feld K and assume that K is a splitting feld for H. If V is an irreducible 

left H-module and if O: H -* A = EndK(V) is its corresponding representation, 

then A becomes an H-module algebra via the action defined by 

h . a  = ~ O(h,)aO(S(h2)) for all h E H, a E A. 
(h) 

In this situation, the Connes spectrum CS(A, H) is the set of all irreducible 

representations zc of H with 

w ( . )  ® v d.V 

as H-modules. Here W(Tr) is the irreducible module associated with ~r and d~ = 

dimK W(Tr). 

Proof." To start with, A is an H-module algebra with action satisfying (2.3). 

Furthermore, since H is semisimple and K is a splitting field of H,  [L, Theorem 

3.3] implies that S 2 is an inner automorphism of H and hence (2.1) holds. In 

other words, all the hypotheses of this section are satisfied. In particular, since 

8: H ~ A is onto and since A is a simple ring, it follows from Lemma 2.8 that 

the only hereditary subalgebras of A are A itself and 0. Hence only B = A need 

he considered when computing CS(A, H). 

Let ~- E Irr(H) and set W = W(~r). Since K is a splitting field for ~r, the 

previous lemma clearly implies that I r ,n A,~A,~ reg A~ if and only if (V ® W)D = Y 

and hence if and only if (V ® W)D ~- dV, a direct sum of d copies of V for some 

integer d. But (V ® W)D ~ W ® V, by Lemma 2.10(i), so degree considerations 

imply that the isomorphism (V ® W)D ~- dV holds if and only if W ® V ~- d,~V 

with d,, = dimg W. Thus, 7r E CS(A, H) if and only if W(Tr) ® V ~ d,,V. | 

In the context of the preceding theorem, we will frequently write CS(V) or 

CS(e) for the Connes spectrum CS(A, H). 
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3. Examples 

Again, we assume throughout this section that H is a finite-dimensional semisim- 

ple Hopf algebra over K and that K is a splitting field for H. Our goal here is 

to look at specific examples related to Theorem 2.13. Recall that if 8: H 

Endg(V) is a representation of H and if V* = HomK(V, K) is the dual of V, 

then the contragredient representation 8": H ~ Endk-(V*) is defined by 

(hA)(v)=A(S(h)v) for a l l h E H ,  AEV* a n d v E V .  

The following result is standard and quite elementary to prove. Note that a linear 

representation is a representation corresponding to an H-module of dimension 1. 

(3.1) LEMMA: Let H be a ~qnite-dimensional semisimple Hopf algebra. 

(i) If 8: H --* EndK(V) is an irreducible representation of H, then so is 

O*: H ---* EndK(V*). Furthermore, the map V* ® V --* K given by 

A ® v ~ A ( v )  for all A 6 V*, v e V 

is an H-module epimorphism onto K = W(e). 

(ii) The set of linear representations of H forms a group under ®. The iden- 

tity element is the counit e and the inverse of the representation zc is its 

contragredient 7r*. 

As a consequence, we have 

(3.2) PROPOSITION: Suppose O: H ---* EndK(V) is an irreducible representation 

of H. 

(i) I f  O # e, then O* q~ CS(O). 

(ii) If 0 is linear, then CS(0) = {e }. 

Proof: 

(i) By Lemma 3.1(i), V*®V has an irreducible constituent isomorphic to W(e). 

Thus, since V ~ W(e), Theorem 2.13 implies that 0* is not contained in 

CS(e). 

(ii) By Theorem 2.13, 7r 6 CS(6) if and only if d~W(6) -~ W ( r ) ® W ( 8 ) .  Indeed, 

since 8 is linear, Lemma 3.1(ii) implies that this occurs if and only if 

d.W(O) ® W(O*) W(O) ® W(O*) 



Vol. 80, 1992 CONNES SPECTRUM OF A tIOPF ALGEBRA 239 

or equivalently 

d .W(d  ~- W(~) ® W(d ~ W(~). 

In other words, we must h a v e .  = e. | 

In particular, if H is commutative, then all Connes spectra constructed in this 

manner just consist of the irreducible representation e. This of course applies 

when H = gIG]* is the dual of a group algebra and also, by the result of [Ho], 

when H = u(L) is a restricted enveloping algebra 

Now let us assume that H = K[G] is a group algebra. Here it is convenient to 

translate the results into the language of group characters. If ~': K[G] ---* Md, (K) 

is any representation of K[G], let ~ : G --* K be its associated character. In other 

words, ~'(g) = t r , ( g )  for all g E G, where tr : Md. (K) ~ g is the usual matrix 

trace. Since K[G] is semisimple and K is a splitting field, it is known that  the 

character ~ uniquely determines the representation , .  Furthermore, we know 

that the character of the tensor product 0 ® ~r is just the product 0~. If r is 

irreducible, then the kernel of ~" is defined by 

ker(Cr) = { g G a I ~'(g) = ~-(1) = dr }. 

It can be shown that ker(~) is the normal subgroup of G described by 

ker( ) = {g  a I . ( g )  = . ( 1 ) }  

and, in particular, if r ¢ e, then ker(~') ¢ G. 

(3.3) PROPOSITION: If H = K[G] and 0 E Irr(H), then 

CS(0) = { ~r E Irr(H) I O(g) = 0 for a]] g E G \ ker(e) }. 

In other words , ,  e CS(0) if  and only i[0 vanishes offker(~'). 

Proof: By Theorem 2.13, ~r E CS(0) if and only if W(Tr) ® W(O) -~ d~W(O). In 

terms of characters, this isomorphism occurs if and only if 

~(9)0(g) = ~(1)0(g) for all g e a 

and the result follows immediately. | 

We can now easily list a number of examples of interest. For this, we assume 

that the reader is reasonably familiar with group theory and character theory. 

Note that G is said to be an extraspecial p-group if G ~ = Z(G) has prime order 

p. Note also that part (v) below generalizes (i), but while part (i) is obvious, the 

proof of (v) requires that we quote a major theorem. 
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(3.4) Example: Let H = K[G] and let 8 E Irr(H). 

(i) If G is a simple group, then CS(8) = {e } for all O E Irr(H). 

(ii) If G is an extrasprecial p-group and if O is a nonlinear irreducible repre- 

sentation of K[G], then CS(8) consists of all the linear representations of 

KIC]. 

(iii) Suppose G has a unique nontrivial normal subgroup W and that G/W is 

cyclic of prime order p. If f /denotes  the set of linear representations w of 

K[G] with ker(~) _D W, then If/[ = p and 

f f/ if O restricted to W is reducible, or 
CS(O) 

I { ~ } if 19 restricted to W is irreducible. 

(iv) CS(8) can contain representations of arbitrary degree. 

(v) If G/Z(G) is simple, then CS(O) = {e } for all 8 E Irr(H). 

Proof." Let 7r and/9 be irreducible representations of K[G]. We consider whether 

rr E CS(8). First, by Proposition 3.3, we know that e E CS(8) since ker(:) = G. 

Now, set N = ker(@) ,~ G and note that N ~ G if 7r ¢ e. Furthermore, if G ¢ 1 

and N = 1, then rr ~ CS(8) since only multiples of the regular character can 

vanish off N = 1. 

(i) The result is trivial for G = 1 and follows from the above comments for 

G ¢ 1 since there are only two possibilities for N. 

(ii) Here we know that [G: Z(G)I = p2n for some integer n > 1, that 8(1) = pn 

and that 8(g) = 0 if and only if g ~ Z(G). Thus 7r E CS(8) if and only if 

ker(Fr) __D Z(G) = G' and hence if and only if 7r is linear. 

(iii) In view of the comments of the first paragraph, we can assume that N ~ 1 

and hence, by assumption, that N _D W. In other words, r E f / a n d  note 

that ker(~) = W for all such 7r ¢ e. From this we conclude that 

I f /  if 8 vanishes off W, or 
CS(8) = { e } if ~ does not vanish off W. 

Finally, if 8 vanishes off W, then the character inner product satisfies 

= ICIWI [#,#]G = p > 1 

and therefore Ow, the restriction of O to W, is reducible. On the other 

hand, if Ow is assumed to be reducible, then since G/W is cyclic of prime 
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order p, [I, Corollary 6.19] implies that Ow = ¢1 + ¢2 + " "  + Cp is a sum 

of p conjugate irreducible representations of K[W]. It then follows from 

Frobenius reciprocity that 0 is a constituent of the induced representation 

c a  and, by degree considerations, we have 0 = Ca. Thus 0 vanishes off W 

and this part is proved. 

(iv) Let C be cyclic of prime order p, let W be an arbitrary finite group and set 

G = C~W, the wreath product of C by W. Choose K to be an algebraically 

closed field with K[G] semisimple. Now G is the semidirect product of A 

by W, where A is the direct product of w = ]W] copies of C and where 

W acts on A by regularly permuting these factors. Say A = 1-I~ Ci and 

let $ be an irreducible representation of K[A] with ker(A) = 1-I~' Ci. Then 

all W-conjugates of A are distinct and hence the induced representation 

0 = AG of K[G] is irreducible. Furthermore, 0 vanishes off A, so it follows 

that CS(0) contains any irreducible representation ~r with ker(~) _D A. But 

G/A -~ W, so any irreducible representation of K[W], lifted to K[G], is 

contained in CS(0). Since W is arbitrary, we can find representations of 

arbitrary degree in suitable Connes spectra. 

(v) Suppose 7r E CS(0). Then 0 vanishes off g and, since 0 cannot vanish 

on any element of Z(G), it follows that N __D Z(G). Thus, there are only 

two possibilities for N. If N = Z(G), then 0 vanishes off Z(G) and, by 

definition, this makes G = G/Z(G) a group of central type. But central 

type groups are known to be solvable, by [HI], so this case cannot occur. 

Thus N = G and lr = e. | 

Observe that (iii) above applies to the symmetric groups G = Sym n with n > 5 

and that (v) applies to the special linear groups G = SLn(q) with n >_ 2 and with 

q a prime power. Of course, q > 4 when n = 2. 

Again, suppose H is a finite-dimensional Hopf algebra over the field K and let 

A be an H-module algebra. If the action of H on A is purely inner, determined 

as in (2.3) by the homomorphism 0: H ~ A, then [BCM, Theorem 5.3] implies 

that the map ": H ---* A#H given by 

h ~ ~ O(S(hl))h2 for all h E H 
(h) 

determines an algebra isomorphism between H and / t  C CA#H(A). Further- 

more, it then follows that the smash product A#H is equal to the tensor product 



242 J. OSTERBURG AND D. S. PASSMAN Isr. J. Math. 

A ® ~r. In particular, A#H is never prime when dimg H > 1. This is, of course, 

consistent with [OPQ, Theorem 1.6] and Proposition 3.2. 

As will be apparent, more complicated smash products also exist in the context 

of inner actions, provided we allow O to be a projective homomorphism. We will 

treat this topic quickly and in an elementary manner, without reverting to the 

study of twisted Hopf algebras. 

To this end, suppose H and/~" are finite-dimensional semisimple Hopf algebras 

over the field K and let -: H ~ /~"  be a Hopf algebra epimorphism. If I is the 

kernel of -, then it is clear that e(I) = 0. Furthermore, - determines a one- 

to-one correspondence between the irreducible representations of/.it and those 

irreducible representations of H with kernel containing I. Thus, with suitable 

identification, we can view Irr(H) as a subset of Irr(H). Now let A be an arbitrary 

H-module algebra and assume that I acts trivially on A so that I -  A = 0. We 

can then let H act on A via 

(3.5) ( h + I ) . a = h . a  for a l l h E H ,  a E A  

and, in this way, A becomes an H-module algebra. 

(3.6) LEMMA: With the above notation, 

CS(A, H) = CS(A, H) n Irr( ). 

Proof." Since -: H ---* /~" is an epimorphism, it is clear that H and H have 

the same image in Endg(A) and therefore 7-/(A, H) = 7"((A, H). Next, if a" 6 

Irr(H) C Irr(H), then it is clear that C = 7r(H) = 7r(H). In other words, we check 

whether rr is contained in CS(A, H) or in CS(A, H) by considering appropriate 

subsets of the same algebras B ® C for all B 6 7-((A, H) = 7-((A,/~). But a close 

look at equations (1.1), (1.2), (1.3) and (3.5) shows that B~ m, Bt~ and B~ are the 

same whether we view H or H as acting on B ® C. Thus rr 6 CS(A, H) if and 

only if r 6 CS(A,/~). | 

With this, we can answer in the negative a question posed by J. Bergen and 

D. Halle. Again, we assume that the reader has a reasonable knowledge of finite 

group theory and character theory. 

(3. 7) Example: CS(A, H) = (e } need not imply that A#H is ring isomorphic 

to A®H.  
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Proof." If a = SL2(5), then Z(G) = {1,z} has order 2 and G/Z(G) is the 

simple group (~ = PSL2(5) - Alth. Let K be an algebraically closed field of 

characteristic 0 and set H = K[G] and /~ = K[G]. Then the natural map 

-: H ---*/~ obtained from G ---* (~ is certmnly a Hopf algebra epimorphism. Note 

that the kernel of - is the ideal I = (1 - z)K[G]. 

Now H = K[G] has an irreducible representation 0 of degree 2 and thus, using 

(2.3), we can let A = M2(K) be an H-module algebra. Next, since O(z) • K,  it 

follows that 1 - z acts trivially on A and hence that I acts trivially on A. Thus, 

equation (3.5) implies that A becomes an H-module algebra via 

(h+ I ) . a = h . a =  ZO(hl)aO(S(h2))  f o r a l l h •  H, a •  A. 
(h) 

Since CS(A, H) = { e }, by Example 3.4(v), we conclude from Lemma 3.6 that 

CS(A, / t )  = { e }. Our goal is to show that A#/~r is not ring isomorphic to A®H.  

Since (~ acts in an inner fashion of A, we can study the smash product A # H  = 

A#K[G] using standard techniques (see for exmnple [P, Proposition 12.4 and 

Lemma 27.5]). Specifically, for each x 6 (~, let u~ be a unit of A such that 

Yc = u~x centralizes A. Then we know that E = CA#/:/(A ) is equal to the twisted 

group algebra K'[(~] with group basis { k [ x  6 G }. Furthermore, A#/ ]  r = A@ E 

and, if T: A ~ A denotes the matrix transpose, then the map p: Kt[G] ~ A 

given by 

• 6G xEG 

is an algebra homomorphism. Indeed, since 0: K[G] --~ A is an epimorphism, it 

follows that { us l x • 0 } spans A and hence that p is an epimorphism. 

Now E = K' [0]  is semisimple and hence Z ~- 63 ~ i  Me,(K), a direct sum of 

suitable full matrix rings over K. Thus, since A = M2(K), it follows that 

A # H  = A ® E e 
i 

and, in particular, A# / ]  r is semisimple. Suppose A#/ ]  r has a ring direct summand 

isomorphic to M2(K). Then the uniqueness aspect of the Artin-Wedderburn The- 

orem implies that ei = 1 for some i and hence Kt[G] has a linear representation 

A. As is well known, this implies that Kt[G] ---- K[G]. Indeed, the proof of 

the latter isomorphism simply requires that we replace each k as above by the 
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unique element of K& which maps to 1 under )t. It therefore follows that p 

gives rise to an algebra epimorphism from K[G] to M2(K) and hence K[G] must 

have an irreducible representation of degree 2. But this is a contradiction, since 

K[G] ~ K[Altb] has irreducible representations of degree 1,3,3,4,5. 

Thus we have shown that A# /~  does not have a ring direct summand iso- 

morphic to M2(K). On the other hand, A ®/~  = A ® K[G] does have such a 

ring direct summand, since K[G] has the linear representation e. In other words, 

A # H  is not ring isonmrphic to A ® / t  and the result follows. | 

Of course, Example 3.4 supplies numerous situations where A#H ~ A ® H 
does not imply that CS(A, H)  = {e }. 

4. O u t e r  A c t l o n s  

We now move o11 to consider outer actions. Since there are a number of different, 

presumably inequivalent, definitions for this concept, we choose one which allows 

us to quickly compute the relevant Oonnes spectra. Thus suppose H is a finite- 

dimensional Hopf algebra over the field K and let A be an H-module algebra. 

As is well known, A is a left A#H-modu le  with action defined by 

ah*b=a(h .b)  for a l la ,  b E A ,  h E H  

and A is a right A#H-modu le  with 

b . h a =  (S-l(h) .b)a for a l la ,  b E A ,  hEH.  

Furthermore, H is said to be trace outer on A if 

(4.1) ( a . A ) b # O  and b ( A . a ) # O  

for all 0 # a E A#H and 0 # b E A. 

The latter definition can be viewed in a more concrete manner as follows. 

Let { x l , x 2 , . . . , x , }  be a basis for H,  let 0 ~ b E A and let cl,c2,...,cn be 

elements of A which are not all zero. Then a = Y]~i cixi is a typical nonzero 

element of A#H and a * a = ~ i  ci(xi" a). Similarly, using [OPQ, Lemma 1.4(i)], 

at = ~-~i S(Xi) ci is a typical nonzero element of A#H and a * a '  = ~i (x i .  a)ci. 
Thus, if we define the trace forms r, r ' :  A --+ A by 

n 

(4.2) i=l 
n 

= . a ) c ,  
i----1 
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for all a E A, then H is trace outer on A if and only if 

(4.3) r(A) ¢ 0 and T'(A) ¢ 0 for all such r, r ' .  

Notice, for example, that if H = K[G] is a group algebra, A is a prime ring and 

G is X-outer on A, then [P, Lemma 29.50) ] implies that H is trace outer on A. 

Furthermore, if H = K[G]* is the dual of a group algebra, then A = )~gea A9 

is a G-graded ring and H is trace outer on A if and only if aAgb # 0 for all 

O # a, b E A and g E G. 

In the remainder of this section we assume that H is semisimple and we use 

e to denote the principal idempotent (integral) of H. Let B be a hereditary 

subalgebra of A, let r E Irr(H) and set C = ~r(H). Then we recall that H acts 

on B ®K C via the formula h. (b ® c) = (h. b) @ c for all b E B, c E C and h E H. 

(4.4) LEMMA: I f X  E B ® C, then 

(i) 

(ii) 

(¢) 

x)[1 , ; .  
(~) 

Proof." 

(i) Note that B ® C becomes a left H-module when we define 

(h) 

(ii) 

Furthermore, in view of equation (1.2), B~ is the set of H-invariants of this 

module. Thus eX E B~ for all X E B ® C. 

Similarly, B ® C is a left H-module under the action 

hX-.~- ~__~(hl .X)ll®'ff(S-l(h2))] for all h E  H, X ~ B®C. 
(h) 

Moreover, in this case, B[, is the set of H-invariants by (1.3). Thus eX E B[, 

for all X E B ® C and the result follows. I 
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(4.5) LEMMA: Write A(e) = ~i"=1 xi @ Yi where { xl,  x2 , . . . ,  x ,  } is a basis for 

H. Then the subsets of A ® C given by 

(i) { 1 ® ~(~,), 1 ® ~ ( ~ ) , . . . ,  1 ® ~(~.)}, and 

(ii) { 1 ® Ir(S-'(y,)),l ® zr(S-'(y2)),...,1 ® zr(S-'(y,)) } 

are regular in A ® C, that is they annihilate no nonzero dement  of this algebra. 

Proof'. Since e(e) = 1, the identities for ~](e)S(el)e2 and ~](~)e2S-l(el)  yield 

s(~,)y, = 1 = ~,y,s-'(~,). 
i i 

Thus ,  since 1 ® lr(1) = 1 ® 1 annih i la tes no nonzero element of  A ® C, the same 

is true of the set { 1 ® ~(y,),  1 ® ~(y~) , . . . ,  1 ® ~(y,,) }. This proves (i) and, by 

applying S -1 to the above formulas, we obtain 

Z S-'(yi)xi = 1 = Z S-2(x i )S- ' (Y i )  
i i 

and (ii) follows. | 

Notice that any reasonable definition for an outer action should imply that 

A # H  is prime and hence, under suitable hypotheses, that CS(A, H) = Irr(/-/) 

by [OPQ, Theorem 1.6]. Thus the next result comes as no surprise. 

(4.6) THEOREM: Let H be a finite-dimensional strongly semiprime Hopf algebra 

over the field K and let A be an H-module algebra. Suppose that A is H- 

semiprime and that the action of H on A is trace outer. Then B~ and B E 

are regular in B ® ~r(H) for all B 6 H(A, H) and 7r E Irr(H). In particular, 

CS(A, H) = Irr(H). 

Proof'. Let B E 7-/(A,H) and ~r E Irr(H) be given and set C = 7r(H). We 

must show that B~ and B,~ are regular in B ® C and, for this, there are two left 

annihilators and two right annihilators which must be checked. Since the four 

arguments are essentially the same, we will prove in detail that r.annB®cB~ = 

0 and then just briefly comment on the remaining cases. To start with, let 

{ 71, "Y2,..., 3% } be a K-basis for C. Then we know that every element of B ® C 

is uniquely a sum of the form ~]i bi ® 7i with bi E B and we call bi the coefficient 

of "Yi. 

Now let Z E r.annB®cB~ and assume by way of contradiction that Z ¢ 0. 
n If A(e) = ~ x~ ® y~ is written as in the preceding lemma, then Lemma 4.5(i) 
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implies that (1 @ ~(yl))Z # 0 for some j ,  say j = 1. In particular, if we write 

( l ® r ( y l ) )  Z E ~-~i B®Ti in terms of the basis for C, then one of the 7k coefficients 

is not zero. We can suppose that this occurs for ~/1 and that the coefficient is 

0 # d E B. Now Lemma 1.6(i) implies that BHd # 0 and hence we can choose 

b E B H with bd # O. Note that if B = RL describes B as a product of a right 

and left ideal of A, then B A B  = R(LAR)L C_ RAL = B and therefore bAb C_ B. 

Let a E A be arbitrary and set X =bab  ® 1 E B ® C in Lemma 4.4(i). Then, 

since b E B H, it follows that B~ contains the element 

i i 

But B~Z = 0, so this yields 

O = Z [ b ( x , ' a ) b ® l ] [ l ® T r ( y , ) ] Z  
i 

and, in particular, if di E B denotes the 71 coefficient of (1 ® 7r(yi))Z, then 

0 =  b(x, a)bd,  
i 

Of course, the above holds for all a E A and hence corresponds to the vanishing 

of a trace form. Furthermore, we know that b # 0, that bdl = bd ~ 0 and that 

{Xl ,X2, . . .  , x ,  } is a basis for H. Thus the above trace form is nontrivial and 

this contradicts the fact that the action of H on A is trace outer. In other words, 

we must have Z --- 0 and hence r.annB®cB~ = 0. In a similar manner, we can 

show that l.annB®cB~ = O. 

Finally, the proof that B~ is regular in B ® C follows the same outline. Of 

course, here we must use parts (ii), rather than parts (i), of Lemmas 4.4 and 

4.5. With these results in hand, we conclude that t r B~B,~ reg B ® C and hence 

that t r ,~ B,~B,~ reg B~ for all B E 7-/(A, H).  In particular, r E CS(A, H)  for all 

lr E Irr(H).  I 

5. C o c o m m u t a t i v e  A l g e b r a s  

In this final section, we consider certain special properties of the Connes spec- 

t rum machinery which arise when H is cocommutative. As usual, let H be a 

finite-dimensional Hopf algebra over the field K and let A be an H-module alge- 

bra with 1. Fix ~r E Irr(H),  set C = ~r(H) and recall that H acts on A ® C via 
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the formula h .  (a ® c) = (h.  a) ® c for all h • H, a • A and c • C. We start 

with a general observation. 

(5.1) LEMMA: If B • ~ ( A , H ) ,  then B~ is a right B H ® C-module and B[~ is a 

left B H ® C-module. Furthermore, ~ t B,~B,r is a two-sided ideal of B H ® C. 

Proof: Since (B ® C) H = B H ® C, the module properties follow immediately 

from equations (1.2) and (1.3). Now let X • B~ r and Y • B~. Then for all 

h • H, we have 

h . X Y =  F_,(h, . Y) 
(h) 

= Z ( h ,  Y) 
(h) 

( a )  * 

= ® 

( h )  

( h )  " • 

by (1.2) and (1.3). Thus X Y  • (B ® C) H = B H @ C. In other words, B,rB,~r t C 

B H ® C and the module properties yield the result. | 

For the sake of simplicity, we will assume throughout the remainder of this 

section that H is cocommutative. This implies, among other things, that the 

antipode S of H is equal to its own inverse. Following [OPQ] and motivated by 

equation (1.1), we define the * action of H on A ® C by 

(h) 

for all h • H and X • A ® C. We will frequently write *H for H to indicate 

that  the action of H is given as in (5.2). Thus for example 

(5.3) LEMMA: Let H and A be as above. 

(i) A ® C is a .H-module a/gebra. 

(ii) If B • ?'l(A, g ) ,  then B~' = (B ® C) *H. 

(iii) If I is a C-submodule of A ® C, then I is H-stable i f  and only i f  it is 

*H-stable. 
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Proof." 

(i) If X = a ® c 6 A ® C, then 

h ,  x = ( h , - a )  ® 

=(hi .a)® [rr(h2)cTr(S(h3))] 

(iii) 

by cocommutativity. Thus * is the tensor action determined by • on A and 

by the adjoint composed with ~r on C. Since both A and C are H-module 

algebras under these actions, we use cocommutativity again to conclude 

that A ® C is a H-module algebra under *. In other words, A ® C is a 

• H-module algebra. This proves (i) and then part (ii) is immediate from 

equation (1.1). 

Let h 6 H and X E A ® C. Then cocommutativity yields 

Z [ 1  ® 7r(S(ha))] (h, * X)[1 @ 7r(h2)] 
(h) 

(a) 

= Z [ a  ® 7r(S(h4)hh)] (h I • X ) [ 1  ® 7f (s - l (h2)h3) ]  
(h) 

= Z(hxe(h2)e (ha ) .  X)  = h.  X. 
(n) 

This formula, along with (5.1), now clearly yields the result. II 

Next, we translate the definitions of Bt~ and B E into the * context. Part  (ii) 

does not require that H is cocommutative. 

(5.4) LEMMA: Let B E 7"I(A, H) and let X E B ® C. 

(i) X • B~ if and only if  

~(h)X Z(h,, 
k J 

(h) 

(ii) X 6 B,~ ff and only if 

(h) 
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(iii) B~ is a left B'~-module and B E is a right B~-module.  

Proof." 

(i) If h E H, then cocommutativity yields 

(h) 

(h) 

(h) 

(h) 

The new characterization of B~ now follows from equation (1.2). 

(ii) Similarly, we have 

(a) 

(h) 

(h) 

(h) 

The new characterization of B~ is now clear from equation (1.3). 

(iii) This follows from (i) and (ii) above since B'~' = (B ® C) *H. I 

The subsets Bin and B~ need not be *H-stable. Nevertheless, we have 

(5.5) LEMMA: I[ B E 7-/(A,H), then 1.annB®cB~ and r.annB®cB r are both 

*H-stable. 

Proof." Let X E 1.arms®eBb. Then part (i) of the previous lemma implies that, 

for any h E H and Y E B~, we have 

= Z ( h ,  • 
(h) 

(h) 

(h) 
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since * is a measuring and XY = 0. Thus h * X E l.annB~cB~. 

Now assume that X E r.annB®cB~. If h E H and Y E B~, then part (ii) of 

the previous lemma yields 

Y ( h , X )  = ShylY(h,  • x )  
(h) 

= Z [ 1  ® 7r(S-l(h3))] !h2* Y ) (h ,*  X !  
(n) 

(h) 

since Y X  = 0 and H is cocommutative. Thus h * X E r.annB~cB~ and the 

lemma is proved. | 

The next result would be slightly easier to prove if K was assumed to be a 

splitting field for 7r. In that case, C = Md.(K)  is a full matrix ring over K and 

the ideals of A ® C are all extended from those of A. 

(5.6) LEMMA: Assume that H is strongly semiprime and that A is H-semiprime. 

If  B E 7"/(A, H), then B ® C is H-semiprime mad *H-semiprime. 

Proof.." We first consider B = A and restrict our attention to the • action. Since 

H acts trivially on C, it follows that (A @ C ) # H  = ( A # H ) ®  C and observe that 

the latter algebra is a direct summand of (A#H)  ® H. Next, since H is strongly 

semiprime and A is H-semiprime, we note that A # H  is semiprime and then that 

( A # H ) ® H is semiprime. Thus ( A # H ) ® C = ( A ® C ) # H is semil)rime and we 

conclude that A ® C is H-semiprime. In view of Lemma 5.3(iii), A @ C is also 

*H-semiprime. 

Now let B = RL E ~(A,  H) and observe that B ® C = (R ® C)(L ® C). Note 

also that R ® C and L ® C are H-stable and .H-stable right and left ideals of 

A ® C by Lemma 5.3(iii). Furthermore, since B reg B, freeness implies that 

B reg (B ® C) and hence that (B ® C) reg (B ® C). In other words, B ® C 

is contained in both ~ (A  ® C, H) and 7"/(A ® C, *H). By [OPQ, Lemma 4.4] 

and the properties of A ® C, we conclude that B ® C is both H-semiprime and 

• H-semiprime. | 

We can now obtain the main result of this section. 

(5.7) TIIEOREM: Let H be a ~nite-dimensional cocommutative Hopf a/gebra 

over the t]eld K and let A be an H-module Mgebra with 1. Assume that H is 
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strongly semiprime and that A is H-semiprime. If  B 6 N( A, H), lr 6 Irr(H) and 

C = ~r(H), then the following are equivalent. 
(i) t r m B,B~ reg B , .  

(ii) ~ r B,~B,, reg (B ® C). 

(ili) 1.annB  = 0 = r.annB  

(iv) 1.ann~®cB~ = 0 = r.annB®cB r. 

Proof: 

(i) =} (ii) Let I denote the right or left aamihilator of * r B,~B, in B ® C. Since 
I r B,~B,~ C_ B'~ = (B®C)  *H, it follows that I is a *H-stable left or right ideal 

by [OPQ, Lemma 1.4(ii)]. Now assmnption (i) iml)lies that 0 = I N By' = 

I N (B ® C) *H. Thus, since B ® C is *H-semiprime and H is strongly 

semiprime, [OPQ, Proposition 4.3(ii)] implies that I = 0. 

(ii) :~ (iii) This is obvious. 

(iii) ~ (iv) Let I = l .anne~cB~,  so that I is a *H-stable left ideal of B ® C 

by Lemma 5.5. Now assumption (iii) implies that 0 = I f l  B~ n = I f l  

(B ® C) *H. Thus, as above, we conclude that I = 0. The argument for 

J = r.annB®cB r is similar. 

(iv) =~ (i) Let a • B "  with B~Bro~ = 0 and note that aB~ C B~ by Lemma 5.4- 

(iii). Thus, by Lemma 5.1, ~ t B,~aB,~ is a two-sided ideal of B H ® C and this 

ideal is nilpotent since I B,~B,ta = O. On the other hand, B ® C  is H- 

semiprime, so [OPQ, Proposition 4.3(i)] implies that (B ® C )  H = B H ® C 

is semiprime. Thus we conclude that ~ t B,~crB~ --- 0 and, in particular, that 

Bra  C_ l .annBacB~ = 0 by assumption (iv). Furthermore, this yields 

a • r.annB®cB r = 0, by (iv) again, and hence we have shown that 

r.annBTB~B[, = 0. Since the argmnent for the left annihilator is simi- 

lar, the theorem is proved. II 

Note that  condition (i) must be considered when we compute the Connes spec- 

trum CS(A, H). On the other hand, we suspect that the equivMent condition 

(iii) will turn out to be nmch easier to deal with in general. 

Finally, the first author would like to thank Declan Quinn for several interesting 

conversations and suggestions. 
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